Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.

نویسندگان

  • Anne-Kristin Kaster
  • Johanna Moll
  • Kristian Parey
  • Rudolf K Thauer
چکیده

In methanogenic archaea growing on H(2) and CO(2) the first step in methanogenesis is the ferredoxin-dependent endergonic reduction of CO(2) with H(2) to formylmethanofuran and the last step is the exergonic reduction of the heterodisulfide CoM-S-S-CoB with H(2) to coenzyme M (CoM-SH) and coenzyme B (CoB-SH). We recently proposed that in hydrogenotrophic methanogens the two reactions are energetically coupled via the cytoplasmic MvhADG/HdrABC complex. It is reported here that the purified complex from Methanothermobacter marburgensis catalyzes the CoM-S-S-CoB-dependent reduction of ferredoxin with H(2). Per mole CoM-S-S-CoB added, 1 mol of ferredoxin (Fd) was reduced, indicating an electron bifurcation coupling mechanism: 2H(2) + Fd(OX) + CoM-S-S-CoB-->Fd(red)(2-) + CoM-SH + CoB-SH + 2H(+). This stoichiometry of coupling is consistent with an ATP gain per mole methane from 4 H(2) and CO(2) of near 0.5 deduced from an H(2)-threshold concentration of 8 Pa and a growth yield of up to 3 g/mol methane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.

In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of h...

متن کامل

A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and ...

متن کامل

Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD+ (Rnf) as Electron Acceptors: A Historical Review

Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction...

متن کامل

Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster.

Heterodisulfide reductase (HDR) from methanogenic archaea is an iron-sulfur protein that catalyzes reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol-coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). Via the characterization of a paramagnetic reaction intermediate generated upon oxidation of the enzyme in the presence of coenzyme M, the enzyme was shown to...

متن کامل

Prospects for Hydrogen Production from Formate by Methanococcus maripaludis

Most methanogenic Archaea are hydrogenotrophic, specializing in the use of hydrogen to reduce CO2 to methane. Even though these organisms have multiple hydrogenases that use hydrogen, there is good potential to use them for the net production of hydrogen. This is because some species can use alternative electron donors, most notably formate, and because some species have nitrogenases that can p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 7  شماره 

صفحات  -

تاریخ انتشار 2011